3.3.1.1信号包络分析为提高在线监测的准确度,GZAFV-01系统的IED/主机通常采用高采样率获取声纹振动及驱动电机电流的信号,然而大量的数据不利于快速、准确存储与分析。因而采用包络分析,简化并反映原始信号特征,便于后续分析与处理。传统希尔伯特变换进行包络分析时存在提取深度不足、存在幅值偏差等问题,因此采用小波变换和希尔伯特变换结合的信号包络分析。声纹振动和电流的信号包络分析如下图3.5所示。
3.3.1.2信号包络重合度比对分析如下图3.6所示,信号包络分析后可快速实现历史信号重合度比对分析,更直观地判断OLTC运行状态。为量化信号重合度比对,GZAFV-01系统引入互相关系数的计算。当实时采集的与正常状态的信号包络互相关系数:◆接近1时,OLTC接近正常运行状态。◆接近0时,OLTC可能存在故障。 杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的可扩展性。杭州GIS振动声学指纹在线监测产品

2.15Q/GDWZ410高压设备智能化技术导则。2.16Q/GDWZ414变电站智能化改造技术规范。2.17Q/GDW561输变电设备状态监测系统技术导则。2.18Q/GDW739输变电设备状态监测主站系统变电设备在线监测I1接口网络通信规范。2.19Q/GDW1168-2013输变电设备状态检修试验规程。2.20JB/T8314分接开关试验导则。2.21国家电网公司变电监测管理规定(试行)第11分册机械振动监测细则。2.22IEC60214.1Tap-changersPart1:PerformanceRequirementsandTestMethods。2.23IEC60214.2Tap-changersPart2:ApplicationGuidelines。2.24IEEEC57.131IEEEStandardRequirementsforTapChanger。2.25IEEEC57.139IEEEGuideforDissolvedGasAnalysisinTransformerLoadTapChangers。2.26IEEEC57.143IEEEGuideforApplicationforMonitoringEquipmenttoLiquid-ImmersedTransformersandComponents。2.27CIGREWorkingGroupA2.34GuideforTransformerMaintenance。杭州隔离开关振动声学指纹在线监测概述杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的多功能集成。

1.2变压器/电抗器运行状态概述变压器/电抗器(下文皆用“变压器”简称)在电力系统中起到电压变换、电能分配等重要作用,其安全稳定运行对确保供电可靠性具有重要意义。有载分接开关(下文皆用OLTC简称)、绕组及铁芯是变压器的重要组成部分,三者故障率总和占变压器整体故障70%左右,而传统预防性试验有试验周期长、影响变压器正常运行、耗费人力物力等缺点。开展基于声学指纹的状态监测,可在在线状态下及时发现变压器OLTC、绕组及铁芯的潜在故障,并及时预警,从而延长变压器使用寿命,提高电网运行的可靠性。
3.2.3平台层的云服务器数据经现场传感器采集并经过IED/主机处理后,通过通信模块(4G/5G无线传输或电力光纤专网)传送至云服务器进行存储及深度计算,平台层的操控计算机(含通过IEC61850通讯管理连接的远端)可通过浏览器登录云服务器随时随地查看监测数据,对变压器进行运行监测及诊断分析。云服务器采用B/S结构(浏览器/服务器模式),提供监测数据的深度计算、存储、浏览器查看等服务。
3.2GZAFV-01系统的系统架构GZAFV-01系统由感知层的声纹振动传感器、电流传感器、IED/主机,网络层的通讯管理里,平台层的数据(云)服务器、内置操控及监测数据分析软件的操控计算机、IEC61850通讯管理机等构成。 杭州国洲电力科技有限公司振动声学指纹在线监测功能的高精度与可靠性。

七、GZAFV-01系统的售后技术培训与服务体系我公司拥有多名从事电力设备运行态势监测及诊断技术的*****和管理人员,均具有深厚的技术底蕴和丰富的现场电气作业经验;并拥有完善的售后服务管理体制。
现场作业组织架构图7.1技术培训关于在线监测型的GZAFV-01系统的现场电气作业,我公司为GZAFV-01系统组建现场作业项目部的电气作业工程师负责安装、调试、投运直至验收通过,并在作业现场对GZAFV-01系统的功能、指标和注意事项进行详细的技术培训。 杭州国洲电力科技有限公司振动声学指纹在线监测技术的政策支持背景。杭州研制的振动声学指纹在线监测技术参数
杭州国洲电力科技有限公司振动声学指纹在线监测技术的国际合作案例。杭州GIS振动声学指纹在线监测产品
从振动和声学数据中提取有用的特征,以便建立设备的声学指纹,通常会用到以下信号处理技术:傅里叶变换(FFT):用于分析信号在频域中的特性,可以识别出设备运行时的固有频率和谐波成分。短时傅里叶变换(STFT):与FFT相比,STFT能够展示信号随时间变化的频率特性,适用于非平稳信号的分析。小波变换:具有良好的时频局部化特性,能够在多尺度上分析信号,适合捕捉瞬态事件和局部特征。包络检测:用于提取振动信号的振幅包络,可以用来表示信号的动态特性。频谱分析:通过计算信号的功率谱密度(PSD)或幅值谱,可以识别出信号的频率成分和能量分布。时频分析方法:如Wigner-Ville分布、Choi-Williams分布等,这些方法能够提供信号的时频表示,有助于分析复杂非线性和非平稳信号。模态分析:通过识别设备振动的模态特性,可以提取出与设备结构和损伤相关的特征。熵分析:如时域熵、频域熵或小波熵,这些方法可以量化信号的不确定性和复杂性,有助于识别设备状态的变化。统计分析:包括均值、方差、标准差等统计参数,可以描述信号的波动性和稳定性。高阶统计量:如偏度和峰度,它们可以提供信号分布形状的信息,有助于识别异常模式。杭州GIS振动声学指纹在线监测产品
文章来源地址: http://yiqiyibiao.smdnjgsb.chanpin818.com/dgyqyb/qtdgyqyb/deta_27864057.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。